
t

 SCHEDU NG
USING C TO BUILD A SATELLITE

EXPERT SYSTEM: EXAMPLES FROM
THE EXPLORER PLATFORM PLANNING SYSTEM

David R. McLean and Alan Tuchman

Bendix Field Engineering Corporation

William J. Potter

NASA/Goddard Space Flight Center

ABSTRACT

Recently, many expert systems have been developed
in a LISP environment and then ported to the real
world C environment before the final system is
delivered. This situation may require that the entire

system be completely re-written in C and may
actually result in a system which is put together as
quickly as possible with little regard for
maintainability and further evolution. With the
introduction of high performance UNIX-Xwindows-
based workstations, a great deal of the advantages of
developing a first system in the LISP environment
have become questionable. This paper describes a C-
based AI development effort which is based on a
software tools approach with emphasis on reusability
and maintainability of code.

The discussion starts with simple examples of how

list processing can easily be implemented in C and

then p_ to the implementations of frames and
objects which use dynamic memory allocation. The
implementation of procedures which use depth first
search, constraint propagation, context switching and
a blackboard-like simulation environment are
described. Techniques for managing the complexity
of C-based AI software are noted, especially the

object-oriented techniques of data encapsulation and
incremental development. Finally, all these concepts
are put together by describing the components of
planning software called the Planning And Resource
Reasoning (PARR) shell. This shell has been
successfully utilized for scheduling services of the
Tracking and Data Relay Satellite System for the
Earth Radiation Budget Satellite since May of 1987
and will be used for operations scheduling of the
Explorer Platform in November of I991.

INTRODUCTION

The issue of"doing Artificial Intelligence (AI) in C'

has been a topic of debate for a number of years now.

The primary motivation of this paper is not to
demonstrate that it is possible to do AI in C but to
demonstrate that there are definite advantages of

doing AI in C. Because traditional approaches of
software development (waterfall) have not
emphasized the reusability of software, the products
of this approach are usually hard to maintain and can
be utilized only in a very narrow range of
applications. NASA has been concerned about the
maintainability of software for many years but only
recently ('IYuszkowski, 1989) has it started taking the
software reusability issue seriously. There are those
who argue that software reuse should be at the heart
of the strategy for software maintenance O.xmgstreet,
1990). A related issue of concern is the need for
software to accommodate change (Watson, 1990).

Because reusable software must accommodate

changes in the desired behavior through easy
reeonfiguration, it also ensures that it is to some
extent maintainable through reconfiguration.
However, reusable software must also be fully

integrated so that components can be added or
deleted easily. Characteristics which improve
maintainability include: use of a standard high-level
language, modularity and standard coding
conventions, which use meaningful names

(Longstreet, 1990). Recently, object oriented
languages have gone a long way toward allowing the
software engineer to obtain the reusability goal.

Object oriented software development has evolved
from the user interface technology which is often
associated with AI (Goldberg, 1984). The

availability of today's high performance
workstations, has allowed the software engineer to

take advantage of some of the AI technology and put
it to practical use. To the software engineer, AI
technology is just another set of tools available to
implement the requirements which eventually
accomplish the desired software goals. However, the
process of converting a LISP-based system to a C-
based one is usually done as quickly as possible,

(NASA-CR-189247) USING C TO BUILD A

SATELLITE SCHEDULING EXPERT SYSTEM: EXAMPLES

FROM THE EXPLORER PLATFORM PLANNING SYSTEM

(E_en_ix Field Engineering Corp.) 11 p
CSCL 09B

N92-14700

Unclas
G3/63 0061521

without regard to the evolution of the C-based
system. To be fully useful to the soRware engineer,
AI tools must be part of an integrated set of software
tools. Therefore, if a team of software engineers is
to take full advantage of the new "AI technologies"
it is desirable that the AI tools be directly accessible
and hence written in the same language as the current

tools. Relying on vender support for modifications
to an off-the-shelf AI shell may be undesirable and

maintaining sottware which is composed of a mix of
different kinds of languages is always expensive.

Other developers and users of AI technology at JPL
(Durham, 1990) have reported similar experience
with software tools.

Because maintainingsoRware usuallyincludes

respondingtonew requirementsandhencesupportof
software evolution (Booche, 1991), the software

reusability issue is even more import,ant. Ideally, the
softwaremaintenanceengineerwilluse existing

soRwarctoolstomodify agivensystemand change

itscapabilities.Therefore,thesoftwaretoolsshould

become partof the languagethroughwhich new

requirementsareimplemented.Becauseallsoftware

musteventuallychangeorbecome obsolete,thiskind
of cxtensibilityshould be a primary goal of all

software development projects. Software

engineeringteamswhich utilizethisapproachmust
become intimatelyfamiliarwithexistingsoftware

toolsand libraries.Thistakestimeand experience

becausegainingaworkingknowledgeoftheexisting
tools is similarto learning a new language.

However, oncethisisaccomplished,theengineers

arcinapositiontodevelopsystemsina fractionof
the time that would otherwise be required. Thus,
managers need to allocate time for new members of
a software reuse team to learn the "new language"
and also to value this expertise once it becomes
available. There is a world of difference between an

off-the-street C programmer and one who has learned
to utilize software tools. It is important that a major
effort toward this end be made so that generic
soRware tools and reuse methodologies can be
identified and utilized.

Getting started with the software tools approach may
require that developers re-think some of their
development paradigms because initial development
may proceed from the bottom up. Some bottom up
development is required because the lower level tools
must exist before they can be utilized. Thus, the

developers need to learn to think in terms of using
and designing for reuse. This also means that
software managers need to allow for reuse

development. Under the current system, the
developers must generate an entire design from
scratch, even if there are tools available for reuse.
Also, because reusability developers will be using

tools written by others, they will require some of the
traits of the traditional maintenance engineers;

humility and adaptability to the style and ideas of
others (Parikh, 1986). With time, many of the
distinctions between developers and maintainers may

disappear. Unfortunately, with the current system of
management, developers and maintainers are usually
different groups and often different contractors.
Thus, the developers have no motivation to create
code which is maintainable or reusable.

This paper describes some of the development effort
which has resulted in generic software tools, which
include AI technologies, for use in solving

scheduling problems. These tools are written in the
C programming language (Keminghan, 1978) with
an emphasis on object-like development
methodology. C was chosen because of the primary
maintenance goal of portability. When C++
(Stroustrup, 1986) class libraries become generally
available (and reasonably standard), these tools will
be re-written to take advantage of full fledged object
oriented development methodology. The emphasis
here will be on integrated AI tool development with
examples which demonstrate how AI technology can
be u_ with a traditicmlly non-AI language, such
as C. Readers who are not interested in the

implementation details may skip those parts without
loss of continuity of the general methodology

description. On the other hand, the detail reader will
note that many of the AI paradigms which seem so
exotic to the uninitiated can be implemented in a

straight forward manner.

GETTINGSTARTED

In 1985 a group of software engineers from Bendix
Field Engineering Corporation, called the Interactive
Experimenter Planning System CIEPS) group, were
tasked with investigating AI tools and techniques to
be utilized for a satellite planning system(McLean,
1987). The task started by looking for tools which

might be useful, such as the language support
libraries and other software currently available.

Eventually,the IEPS softwareengineerscreated
librariesforfileI/O,stringmanipulation,dateand

time conversion and user interface tools. These user-
defined libraries were written on top of the more or

less standard language support libraries and have

evolved continuously since their initial creation. The
IES application developers, in turn, utilized these
user-defined libraries (tools) to create prototypes and
applications such as the Earth Radiation Budget
Satellite System (ERBS) Tracking and Data Relay
Satellite (TDRS) contact planning system (McLean,
1987).

For those readers who are famliliar with LISP but not

with C, the following example will demmstrate how
some of the behavior of LISP can be simulated in C.

In particular, this example shows how to simulate
some of the behavior of the LISP primitives CAR
and CDR. First consider a string which contains
three tokens as follows:

first second third

In LISP, the first token is obtained by invoking the
string with CAR and the remainder are retumed by
invoking CDR.

(CAR (In'st second third)) --> In'st
(CDR (fn-st second third)) --> (second third)

Now consider a module written in C called

"gettok" which takes a pointer to a character string
as the first argument, a string token buffer as the
second argument and a character delimiter as the
third argument. Get tok also returns a pointer to the
remainder of the string:

sptr = "first second third";
sptr = get_tok(sptr,token,BLANK);

Before invocation:

sptr m> "first second third"

After invocation:

token --> "f'_rst"

sptr --> "second third"

Because get_tok returns a NULL aaken when the end
of the string is reached, it also provides iterative
control as follows:

for(sptr =get_tok(sptr,tok,BLANK);
tok; / while tok not empty */
sptr = get_tok(sptr,tok,BLANK))
do_something(tok);

All of the tools described in the subsequent sections

utilize get_tok for string processing.

USER INTERFACE TOOLS

The IEPS user interface tools were designed to be
used independent of the application and to be as
portable as possible between the PC and workstation
hardware platforms. The bulk of these tools reside in
a library called MEXLIB (Menu-based EXecutive
LIBrary) (NASA-GSFC, 1988) which was designed
to utilize an AI technology called Menu-based
Natural Language Understanding (Tenant, 1983).
These tools allow the application developer to
describe the grammar, through which the user
interacts with the application, in terms of menus,
forms and other user interface objects (widgets).
Thus, an application need only read the grammar file
in order to know how to interact with a user and

invoke the appropriate objects for command line
building. Other user interface tools, such as the
Transportable Applications Environment (NASA-
GSFC, 1990) and others which utilize X Windows
MOTIF or OpenWindows, create C source code
which then must be compiled and linked to the
application. MEX technology avoids this by
dynamically creating the objects which are specified
by the grammar file.

The LISP DEFSTRUCT data abstraction mechanism
allows the user to create data structures. C also

provides this capability and MEXLIB is built on
these structures. When a user interface grammar file
is read, MEX tools dynamically allocate these
internal structures and fill in the slots of information

specified by the file. For example, ff the internal
structure is of type menu then the options of the
menu are read into a linked list and the appropriate
interactive widget is assigned to the method slot. As
each MEX structure is lmilk it is put into a hash table
so that it can be looked up quickly by name. Once
all the MEX structures have been built, the structure
whose name is '_naln" displays itself to the user and
initializes the interaction. After the "main" object
has completed its interaction with the user it adds
information to a command line which is then parsed.
The parser examines each token in the conunand line

and uses a depth first search to "expand" those tokens
which match MEX structure names. Expansion is
done by invoking the appropriate object which adds
more information to the command line.

In a way similar to deriving new classes from base
classes, C lets the developer derive new structures

from more primitive structures. A simplified MEX
data structure can be built upon two other structures,
list and form. List represents a linked list of
character strings and is used to hold the options of a
menu or the default values of a form. Form

represents a template with fields to be displayed to
the user. Form, in tum, is built upon another
structure called form element. Each form element

has a field name, value, row and column information.

Form uses an away of form elements to represent the
various fields on the form, a template (character

page) which is displayed to the user and an index
which represents the current field being processed.
Examples of the list, form_element and form data
structures are given below:

struct list {
char *llne;
struct list *next;

};

struct form element {
I

char *field_name;
char *value;
int row, column;
};

struct form {

struct form_element f[MAXF];
char *temp[MAXLINE];

int current_field;
};

In addition to the these structures, the mex structure
also contains the name of the structure, a rifle, the

menu option selected, the row and column position
and a pointer to the interface widget to be invoked.

struct mex {
char *name;
char *rifle;
int ij;
char *selected;

struct list *list;
struct form *form;

char *(*interface)0;
};

As a mex grammar file is read, mex data structures
are dynamically allocated by invoking mexalloc
which uses the standard C library malloc tool. Some
of the members are then set to default values until

more detailed information is read.

struct mex *mexalloc0
{
struct mex *object;

object = (struct mex *) malloc(sizeof (struct mex));
object->name = NULL;
object->title = NULL;
object->list = list_alloc0;
object->form = NULL;
object->i = object->j = EMPTY;
object->selected = NULL;
return(object);

Notice that the list member invokes a user defined

llst alloc to allocate its initial dynamic space but that
the-form member is set to NULL until it is known

that it will be used. (Forms use the list structure for
default values but simple menus do not use the form
stlucture.) Because dynamic memory is allocated
only on an as needed basis, it is conserved.

Much of the work of parsing the MEX grammar file
is accomplished by use of the get_tok tool.
However, once the mex structures have been built

and put into the hash table, the main MEX parser can
be invoked to build command lines. A simplified

version of the MEX parser is given below and
described in the following paragraph:

char *parse(line)
char *line;
{
char head[80];
char *tail;
char *select;

if(I'line)
return(NULL);

tail = get_tok(line,head,BLANK);
if(object = mex_get(head)) {

if(object->l->next->line)
select = object->interface(object);

else

select = object->l->line;
object->selected = select;
parse(select);

}
else

add_tok(head);
return(parse(tail));

Parse is given a character string (line) and if it is

empty, the value NULL is returned. Otherwise,

get_tok is invoked to obtain the first token in the
string (head). Next, the value of head is looked up
in the hash table to see if it is the name of a mex
structure. If so, then the structure (object) is
retrieved and its linked list is examined to see of

there is more than one option (which would require
user interaction). If this is the case, then object's
user interface is invoked to return the option selected.
(In the caseof a form,allfields are remmect) Once

the option has been selected, a pointer to its value is
placed in the "selected" slot of object and parse is
invoked again (depth first) with that selection. If
head is not the name of a mex structure then it is

added to the command line being built by invoking
add tok. Finally, parse is again invoked on the
remainder of the original string (tail).

thus represent the backward chaining component of
the TIE1 architecture. Complex rules have additional
attributes which are set to specified values when the
rule is fired and thus provide the forward chaining

capability of TIE1.

When TIE1 is invoked, the user specifies the KB to

be used and the goal to be sought. TIE1 then reads
and parses (via get_tok) the specified KB and
dynamically allocates the data structures which
represent each frame. After each frame is allocated,
it is filled with the attribute and rule information

specified in the KB and then placed in a hash table to
allow quick look up by frame name. Finally, TIE1
considers the goal frame and starts the search for its
value by testing each rule in this frame. In the
simplified version of TIE1, the name of the first true
rule is returned as the value of the goal being sought.

AN INFERENCE ENGINE

The inference engine developed by the IEPS group is
called the Transportable Inference Engine version 1
(rlE1), (Md.e,_ 1986). TIE1 utilizesMEXLIB tools
for its user interface and is frame based (Minsky,

1975). Each frame represents a goal or concept which
has a default value and a value which is to be sought

by applicalionoftherulesofinferenceassociatedwith
theframe.The attributeswhich arereferredtointhe

rulesmust be specifiedinthe frame attributelist.
Thus, framesconsistof a frame name, a value,a

defaultvalue,anattributelistand arulelist.A TIEI

Knowledge Base CKB) consistsofa setofframes,

one ofwhich representsthegoaland theremainder

which representsubgoals.

Each simple rule represents a hypothetical instance
of the goal or concept and is composed of a rule
name which represents a potential value for the frame
and attribute-relation-value triplets. For example:

N_eyes It 8

(The number of eyes is less than eight.)

The attributes which make up the rules may be

primitive (not decomposable) or they may represent
other frames. Primitive attributes obtaintheirvalues

by interacting with the user or by querying data
bases. When a KB is to be used interactively, the

KB engineer can specify the MEX-style user
interfaces to be utilized for each attribute.

Decomposable frame attributes obtain their values
from the inference rules associated with its frame and

Because TIE1 uses MEX -style user interfaces for the
primitive attributes, its frame data structures utilize
a list of mex structures with their respective values to

be sought:

struct alist {
struct mex *ma;
char *value;
struct alist *next;

};

A rule list structure is also used and contains the
name of the rule, a flag which is used during rule

testing and an associated list of attribute-relation-
value triplets:

struct rlist {
char *name;
int flag;
struct list *triplet;
struct rlist *next;

);

In addition to the attribute list and the rule list, each
TIEI frame structure also contains the name of the

frame, its value (when known) and a default value:

struct tie (
char *name;
char *value;
char *default;
struct alist *alist;
struct rlist *rlist;

};

A simplified TIE1 search algorithm, implemented in
module "infer", which uses the TIE1 frame data

structure is given below and described in the
following paragraphs:

infer(tieobj)
struct tie *tieobj;
(
struct alist *a;
struct rlist *r;
struct mex *ma;
struct k *known;

int nhypots;
if(known = getknown(tieobj->name)) {

tieobj->value = known->value;
return;

}
r = tieobj.>rlist;

for(nhypots=0; r->name; nhypots++, r = r->next)
r->fla8 = TRUE;

for(a=object->alist; a->ma; a = a->next) {
ma = a->ma;
if(known = get_known(ma->name))

a->value = known->value;
else

if((newobj = tie..get(ma->name)) != UNKNOWN)
{

infer(newobj);
a->value = newobj->value;

else

a->value = user_select(ma);

put_known(ma->name,a.>value);
nhypots=test_hypots(tieobj,ma->name_ahypots);

if(nhypots == 0) (
tieobj->value = tieobj->default;
break;

)
)
if(nhypots != O) {

for(r=tieobj->rlist; r->name; r = r.>next)
if(r->flag == TRUE)

break;

tieobj->value = r->name;

lint_known (tieobj->name, tieobj->value);

Infer is passed the TIE1 frame data structure (tieobj)
whose name is the goal being soughL Module
get_known is invoked first to see if the value of that

goal (attribute) is already known and if it is, it sets
tieobj's value to that known value and returns.
Otherwise, tieobj's rule list is accessed and the
values of all the flag slots are set to TRUE. This has
the effect of treating all the rules as contending
hypotheses which are initially assumed to be true.
Then, the frames attribute list (alist) is accessed and
each attribute's (a) value is sought according to the
following ordered strategies:

Look up the attribute's name in the known facts
hash table via module get_known and then
return the value found there.

Look up the attribute's name in the frame
hash table via module get_tie and then Invoke
module infer again (backward chaining) to
obtain the value.

Ask the user or a data base for the value of the
attribute.

Once a value is obtained for an attribute, its value is

put into the facts hash table via module put_known.
Then module test hypots is Invoked to test each rule
in light of the new information obtained. Module
test_hypots sets each rule's flag according to the
success or failure of each rule and returns the total

number of true rules (hypotheses). If the number of
true hypotheses is zero, then the goal value of the
frame is set to the default value and the attribute

check loop is exited. Otherwise, the search and test
strategy is continued for the remaining attributes in
the list.

When the attribute search and test loop is exited, a
check is made to see if the number of true hypotheses
is zero. If this is not the case, then a search is made

to find the first true hypothesis and when found this
rule's name is assigned to the frame value. Finally,
the frame's value is added to the facts hash table.

HEURISTIC SCHEDULING

The heuristic scheduler developed by the IEPS group
is called the Planning And Resource Reasoning
(PARR) shell (ICicle.an, 1989). PARR's interactive
mode utilizes MEXLIB tools for user Interaction and

acts like an intelligent assistant to the user. In the
batch mode, it simulates the behavior of an expert
human scheduler which has heuristics for where

activities are to be placed on a fimeline. These
heuristics include specifications for the priorities,

durations and how often the activities are to be

scheduled. In addition, the resources, constraints and

eonfiict resolution strategies may be specified. All
of these specifications are placed in a KB which
describes the way the expert human scheduler would
schedule each general activity type (activity class).

PARR's architecture is somewhat like a blackboard

model (Engelmore, 1988) which builds an activity
timeline on a global blackboard and utilizes agents to
perform constraint checking, resource management
and conflict resolution. When PARR reads the KB,

it dynamically allocates internal structures which
represent each activity class and fills the slots with
the appropriate generic values, thus PARR is also
considered a frame based system. PARR's activity
class structure is given below:

ty_defstruct{

inttype;
char *name;

int priority;
int repeat;
long duration;
int offset;
int shiftable;
struct llst *resources;
struct list *constraints;

struct llst *strategies;
char *subnames;

struct list *miscinfo;
} ACLASS;

Given the background of examples discussed so far,
most of the members of ACLASS should be self

explanatory and have been explained in detail
elsewhere (McLean, 1989,1990). An exception is
subnames which is a string of optional subactivity
names.

When PARR creates an instance of an activity class
(ACLASS) it dynamically allocates a different
internal structure which will contain the detailed

schxlding information about that particular instance.
Among other things, the EVENT structure, as it is
called, consists of a new structure (O which represent
time (start and stop) and also a pointer to the KB
structure (ACLASS) which is used to generate the
instance. The additional members are label and flag
which are used to store associated information such

as orbit numbers, reslist which is a resource list and

subacts which is an array of optional subactivities.
The last and next members are used to link the

instances of a given class so that they can be kept in

time order.

struct t {
Iong seconds;
int date;

};

typedef struct event {
ACLASS *ac;
struct t start;

struct t stop;
char *label;
char flag;
struct list *reslist;
struct event *subacts[MAXSUBS+l];
struct event *last;
struct event *next;

} EVENT;

When an instance (EVENT) is to be created, the
information in the activity class is examined so that
the start and stop time of the activity can be set. The
PARR controller then consults as many as three
agents; the constraint checker, the resource manager
and the conflict resolver. When invoked, each agent
examines the appropriate slot in the activity class
structure and performs its specific task. Status
messages are then returned after each of the agents
has performed its task and the controller makes a
decision as to how to proceed with the scheduling of
that particular activity. When the activity has passed
all its constraint checks and all its resources have

been allocated, it is placed on the timeline. The
internal representation of this timeline is an array of
EVENT structures:

EVENT *timeline[MAXCLASSES];

The constraint checker uses a rule representation
similar to TIE1 (attribute-relation-value triplets) but
does not include the implicit backward and forward
chaining capabilities because of the simplicity of this
type of constraint check. If any rule is violated, a
message is constructed which states the constraint
rule that was violated and specifies the conflicting
value, otherwisea status of OK is returned.

If constraint checking has been passed and resources

are required then the resource agent is consulted
which, in tum, consults the appropriate resource
model. At present, PARR supports a simplified
power model and two different types of tape recorder
models. If any of the resource models consulted
return a status other than OK, a message is built

which explains why the resource allocation failed.

If either the constraint checker or the resource

allocation agent returns a status other than OK then
the conflict resolution agent is consulted. This agent
consults the status message and the conflict
resolution slot of the activity class and tries to resolve
the conflict by either rescheduling the current activity
or rescheduling the conflicting activities. To describe
the implementation of all of these strategies is
beyond the scope of this paper. However, a
description of the general approach to conflict
resolution may give some insight into how PARR
manages conflict resolution by consulting the
strategies list and the conflict messages retun_ from
the constraint checker and the resource manager.

THE CONFLICT RESOLUTION AGENT

The following is a simplified version of the contlict
resolution agent which is discribed in the following

paragraphs:

resolve_conflict(ew)
EVENT *ew;
{
EVENT *rwndo;
struct list *strat;
int status;
int strategy;
char *duration, *newact;

strat = ew.>ac->strats;
rwndo = get_resources(ew);
strat = next_strat(strat,&stratesY);

for(status = NOTOK;
status == NOTOK && sturtegy != EMPTY;

strat = next_strat(strat,&strategy)) {

if(context(strategy,conflict_msg) != OK)
continue;

switch(strategy) {
case START:

start(&ew,rwndo);
break;

case END:

end(&ew,rwndo);
break;

case BEFORE:
if(before(&ew) == EMPTY)

continue;
break;

case AFFER:
if(after(&ew) == EMPTY)

continue;
break;

case DELETE:

if(delete(ew,conflict_msg) == EMPTY)
continue;

break;
case NEXT:

if(!next(&ewDrwndo))
continue;

break;
case PRIOR:

if(!prior(&ew,rwndo))
continue;

break;
case DURATION:

duration = 8et_duration(strat-Mine);
next_time(&ew->stop,ew->start,duration);
break;

case BUMP:

duration = get_duration(strat->line);
bump_time(&ew->start,duration);
bump_time(&ew.>stop,duration);
break;

case ACTIVITY:

newact = get_newact(strat->line);
if(activity(ew,newact) == NOTOK)

continue;
else
return(OK);
break;

case SHIFT:

if(shift(ew,conflict_msg) -= NOTOK)
continue;

break;

= do_iusert(ew);
}
status

}
if(status -= OK)

report_success(ew->start,ew->stop);
return(status);

Resolve conflict is passed the activity's data
structun.-(ew) that contains its activity class (ac)
with the list of ccmflict resolution strategies (strats).

Initially, get_resource is invoked to return the event
datastructure (rwndo)whichistheprimaryresource

window (forexample,Daylightview)usedby this

activity.Then,aloopisinitializedwhich processes

the strategieslistwhile the statusof each tryis

unsuccessful and strategies remain. In this loop,
module context is invoked to determine the

suitability of the strategy to be tried in view of the
conflict message. For example, if the BEFORE
strategy is to be used and the conflicting activity is a
tape dump and the activity to be scheduled uses tape
then the strategy may not be suitable because there
probably won't be enough tape remaining just before
a tape dump. If the context is not suitable then the

strategy is skipped.

On the other hand if the strategy is suitable, the

appropriate strategy handler is invoked so that the
event structure can be modified accordingly. This
modification usually includes changing the start and
stop times of the activity. If this adjustment is not
successful then the strategy is abandoned and control
returns to the next strategy. If the strategy is
successful then module do insert is invoked with

the adjusted start and stop ti_es. Do_insert consults
the constraint checker and the resource manager

again and adds the activity to the timelioe if all goes
well. The status of do insert is returned and

processing continues depending upon its value. If
the status is not OK then the next strategy is tried. If
the status is OK then the loop is exited, a message is

logged and resolve_conflict returns the final status.

The following is a brief description of the conflict
resolution strategies used by PARR:

START

Reschedule the activity at the start of a specific
resource window by setting the start time of the
activity to the start time of the resource window.
Alternatively, reschedule the activity at the start of
the specified time.

END

Reschedule the activity at the end of a specific
resource window by setting the start time of the
activity to the end (stop time) of the resource
window.

BEFORE

Resehedule the activity before the conflicting activity

by adjusting the stop time accordingly.

AFTER

Reschedule the activity to occur after the conflicting

activity by adjusting the start time accordingly.

NEXT, PRIOR

Reschedule the activity in the next or prior resource
window by adjusting the start and stop times
accordingly.

DELETE

Delete the conflicting activities. Start and stop times
of the current activity are not adjusted. Care is taken
not to delete an activity of higher priority.

DURATION

Shorten the duration of the activity.

BUMP

Bump the start and stop times by a specified amount
(plus or minus) to avoid the conflicting region.

ACTIVITY

Schedule an alternative activity instead of the currem
activity type. This strategy temporarily abandons
trying to schedule an instance of the current activity
class and tries to schedule an instance of another
class. When successful, module resolve_conflict

returns immediately with a success status. When not
successful, the next strategy in the current activity

class is tried. Switching to another activity class
amounts to a context switch for controlling the
behavior of PARR because each activity class
contains its own heuristics which are used to create

instances of a particular class. Thus, when module
activity returns, the context of the current activity
class (and strategies lis0 is restored.

SHIFT

Reschedule the conflicting activities. This strategy
also does not change the current activity's start or
stop times. When shifting is attempted, the activity
class of the conflicting activity is examined to make

sure that shifting is allowed. If shifting is allowed
then the conflicting activity is temporarily deleted
and the start and stop times are adjusted so that it

may be rescheduled out of the conflicting range of
the current activity. Then module do Insert resolve
is invoked with the conflicting activity's adjusted

event structure. Do_insertresolve, in turn, checks

theconstraintsandresourcesforthisadjustedactivity
and also consults with the conflict resolution agent if

required. The case may be that more conflicts will
occur and that the shifting strategy be applied again
to resolve those conflicts. Thus, this type of conflict
resolution demonstrates the constraint propagation

problems which PARR attempts to solve by use of
recursive application of context dependent strategies.

CONCLUSIONS

The C-based AI technology presented here is not

only clearly possible but is in actual use (McLean,
1987). Because this AI technology is part of an
integrated set of tools, the experienced software
engineer can readily make use of it to build new
applications. It is this merging of the AI technology
with the standard tools and techniques of experienced

software engineers which makes the AI technology
so readily usable.

Traditional software development efforts take years
to accomplish their goals and usually start the
process by building the system components from
scratch. The future requirements for NASA's
missions will be even more demanding in terms of

the number, complexity and configurability of
software. In order to solve these problems, software

engineers and managers need to get serious about the
software reuse issue. This means that not only do the
engineers need to be aware of and design for reuse
but also that managers allow for a methodology
which supports this effort. This methodology
includes building systems through reuse of existing
sottware tools, through iterative refinement and

prototyping.

The ERBS scheduling system has demonstrated the

utility of the software tools approach to maintain an
expert planning system (McLean, 1991). This
soltware reuse approach is also being used to develop
the Explorer Platform Planning System (EPPS)
(McLean, 1990) which will be used by the flight

operations team to schedule mission support
activities. EPPS is being built by reusing and
enhancing the ERBS scheduling system software
tools. Although much of the engineering
methodology for reuse technology has been defined,

the management methodology is lagging and needs
further exploration and development.

ACKNOWLEDGEMENT

The authors wish to thank Patricia Lightfoot at
NASA-GSFC/COde 514 and Ellen Stolarik at Bendix
Field Engineering Corporation for their support of
this work. This work was supported by NASA
contracts NAS5-31000 and NAS5-27772.

REFERENCES

Booch, G. (1991), Object Oriented Design With

Applications, Benjamin/Cummings.

Durham, R., ReiUy, N. B. and Springer, I. B. (1990),
"Resource Allocation Planning Helper (RALPH):
Lessons Learned," Proceedings of the 1990
Goddard Conference on Space Applications of

Artificial Intelligence. Engelmore, R. and
Morgan, T. (1988), Blackboard Systems, Addison-
Wesley.

Goldberg, A. (1984), Smalltalk-80: The Interactive
Programming Environment, Addison-Wesley.

Keminghan, B. W. and Ritchie, D. M. (1978), The
C Programming Language, Prentice-HaU.

Longstreet, D. (1990), "Introduction," Software
Maintenance and Computers, IEEE Computer
Society Press.

McLean, D. R. (1986), "The Design And

Application Of A Transportable Inference Engine
(TIE1)," Tdematics and Informatics, J. Liebowitz
(ed.), Vol 3 No. 3

McLean, D. R., Littlefield, R. G., and Macoughtry,
W. O. (1987), "Defining and Representing Events in
a Satellite Scheduling System: the IEPS (Interactive
Experimenter Planntng System) Approach,"
Proceedings of the 1987 International
Telemetering Conference Vol 23

McLean, D. R., Littlefield, R. O., and Beyer D. S.
(1987), "An Expert System for Scheduling Requests
for Communications Links Between TDRS and

ERBS," Tdematles and Informatics, J. Liebowitz

(ed.), Vol 4 No 4

IO

McLean, D. R., Yen, W. L. (1989), "PST & PARR:
Plan Specification Tools And A Planning And
Resource Reasoning Shell For Use In Satellite
Mission Planning," Proceeding of the 1989
Goddard Conference of Space Applications of

Artificial Intelligence.

McLeam, D. R., Page, B. J. Potter, W. J. (1990), "The
Explorer Platform Planning System: An Application
of a Resource Reasoning Planning Shell,"
Proceedings of the First International Symposium
on Ground Data Systems for Spacecraft Control.

McLean, D. R. (1991), "Maintaining An Expert

Planning System: A Software Tools Approach." To
be published in Institutionalizing Expert Systems:
A Short Handbook for Managers, J. Liebowitz
(ed.).

Minsky, M. (1975), "A Framework for Representing
Knowledge," Psychology of Computer Vision, P.
H. Winston (ed.), McGraw-HiD.

NASA-GSFC (1988), MEX: A Portable Menu-
Based Executive.

NASA-GSFC (1990), TAE Plus User Interface

Developer's Guide.

Parikh, G. (1986), Handbook of Software
Maintenance, John Wiley & Sons.

Stroustrup, B. (1986), The C++ Programming
Language, Addison-Wesley.

Tenant, H. R., Ross, K. M., Saenz, R. M.,

Thompson, C. W., and Miller, J. R. (1983), "Menu-
based Natural Language Understanding,"
Proceedings of the Association for Computational

Linguistics, MIT.

Ttusz_kowski, W. (1989), "Prottxy_ Software Reuse
Environment at Goddard SFC," Software Reuse

Issues, Proceedings of a workshop sponsored by
NASA Langley Research Center.

Watson, W. (1990), "Introduction," Space Network
Control Conference on Resource Allocation

Concepts and Approaches Presentations at GSFC,
NASA.

